- . R e e R

R Bl e g
1. Every free tree with n = 1 vertices contains exactly n—1 edges.

ﬁ 2. If we add any edge to a free tree, we get a cycle.

\

\u\\m\ 7 :,We can prove (1) by induction on n, or what is equivalent, by an argument
concerning the ‘‘smallest counterexample.” Suppose G = (V, E) is a coun-
terexample to (1) with the fewest vertices, say n vertices. Now »n cannot be 1,
A=/ because the only free tree on one vertex has zero edges, and (1) is mm:mmwa.

#.

lvv‘iw Therefore, n must be greater than 1.
: \(.\\M&w% We now claim that in the free tree there must be some vertex with exactly
Kb sivr one incident edge. In proof, no vertex can have zero incident edges, or G

Wwould not be connected. Su

M&\wa es incident.
Then, start at some vertex vi, and follow any edge from v,.

At each step,

P G ooty leave a vertex by a different edge from the one used to enter it, thereby form-
ing a path v, v,, v3, .

Since there are only a finite number of vertices in V, all vertices on this
path cannot be distinct; eventually, we find v; = v, for some { < j. We can-
not have i = j—1 because there are no loops from a vertex to itself, and we
cannot have i = j—2 or else we entered and left vertex v;;; on the same edge.
Thus, i < j—3, and we have a cycle vi, v;41, . .., v; = v;. Thus, we have
contradicted the_hypothesis that G had no vertex with only one edge incident,
and therefore conclude that such a vertex v with edgé (v, w) exists.—

Now consider the graph G’ formed by delefing vertex v aid edge (v, w)
from G. G’ cannot contradict (1), because if it did, it would be a smaller
counterexample than G €dges. _But
G has one moreedge and one more vertex than G, so G has n—1 edges,
proving that G does indeed satisfy (1). Since there is no smallest counterex-
ample to (1), we conclude there can be no counterexample at all, so (1) is

f:.:n

\o\\\\«, . Now we can easily prove statement (2), that adding an edge to a free tree
Gt + P/ forms a cycle. If not, the result of adding the namo. to a free tree oﬁ: vertices
Shot e would be a graph with n vertices msa n_edges. This graph would still be con-
N nected, and we su lic. Thus we

‘ would have a free tree whose vertex and edge count tsfy condition
\»\Q shE 5% (1.
Ao,
,M%\M“\W \.»\ 40 Methods of Representation

The methods of representing directed graphs can be used to represent
undirected graphs. One simply represents an undirected edge between v and
w by two directed edges, one from v to w and the other from w to v.

Example 7.3. The adjacency matrix and adjacency list representations for the
graph of Fig. 7.1(a) are shown in Fig. 7.3. D

Clearly, the m&moo:@ Bm:_x for a graph is symmetric. In the adjacency
list representation if (i i is on_the list for vertex i
and vertex { is on the list for vertex j.

Je ftrey O Uilmang

\w_w,,vﬁm.,, m.v,__v,«.shjf@% m.:s,v.x n,\\ TLTSV
i o —_ P4 ‘
h;\ﬁe\ VAR T 2 }\,\. crTf
d
1
1
1
0

[787

c
d

—_0 = O R
— = o
_ O - On

(a) Adjacency matrix

a —{ o [—F— da]*]|
b —{ a [F— ¢ [[d e
¢ —{ 6 [F— a [o |
d —L « [o [—F— c[e

(b) Adjacency list

Fig. 7.3. Representations.

QD o5+ G5simen

d (\I\Q b e

S Lossect an werbes

, @ 4y, Horal Cost
Suppose G = (V, E) is a ¢opueated graph in which each edge (u, v) in £
a cost c(u, v) attached to :.ﬁ> spaunning tree for G is a free tree that con
all the vertices-in V.1The cost of a spanning tree is the sum of the costs o
owwMys\.wn.m tree. In this section we shall show how to find a minimum
spanning tree for G.

7.2 —?::::E:.Ocmp Spanning H-.mmm_

Example 7.4. Figure 7.4 shows a weighted graph and its minimum-cost :
ning tree. O

A typical application for minimum-cost spanning trees occurs in the d
of communications networks. The vertices of a graph represent cities an
edges possible communications links between the cities. The cost assoc
with an edge represents the cost of selecting that link for the network
minimum-cost spanning tree represents a communications network that
nects all the cities at minimal cost.

Fig. 7.4. A graph and spanning tree.

The MST Property

There are several different ways to construct a minimum-cost spanning tree.
Many of these methods use the following property of minimum-cost spanning
trees, which we call the MST hx&umx@ﬂ\rﬁ G = (V, E) be a connected graph
with a cost function defined on the edges. Let U be some proper subset of the
set of vertices V. If (u,v) is an edge of lowest cost such that u € U and
y € V—U, then there is a minimim- i ree that includes (u, v) as

an aama.u

The proof that every minimum-cost spanning tree satisfies the MST pro-
perty is not hard. Suppose to the contrary that there is no _minimum-cost
spanning tree for G that includes (u,v). Let T be any minimum-cost_span-
ning tree for G. Adding (u, v) to T must introduce a cycle, since T is a free

T=(bly)
VN D,

tree and therefore satisfies property (2) for free trees. This cycle involves

edge (u, v). Thus, there must be another edge (1', v') in T such that v’ € U
and v’ € V—U, as illustrated in Fig. 7.5. If not, there would be no way for
the cycle to get from u to v without following the edge (u, v} a second time.
Deleting the edge (u', v') breaks the cycle and yields a spanning tree T
whose cost is certainly no higher than the cost of T since by _assumption
cu, v) = c(u',v'). Thus, T' contradicts our assumption that there is no

minimum-cost spanning_tree that includes (u. v).

Z.

Prim’s Algorithm

There are two popular techniques that exploit the MST property to construct d
minimum-cost spanning tree from a weighted graph G = (V, E). Ope such
method is known as Prim’s algorithm. Suppose V ={1,2, ...
algorithm begins with a set U initialized to {1}. 1t then “‘grows’ a spanning
tree, one edge at a time. At each step, it finds a shortest edge (u, v) that cof-

nects U and V—U and then adds v, the vertex 1n t_repeats this
e

.} Prim's

Crar?& cra’.rl

Fig. 7.5. Resulting cycle.

step until U = <u The algorithm is summarized in Fig. 7.6 and the sequence
of edges added to T for the graph of Fig. 7.4(a) is shown in Fig. 7.7.

Ol & po——ro E.cnan_:.m_wz.s_A G: graph; var_T; set of edges);

{ Prim constructs a minimum-cost spanning tree T for G }

var
U: set of vertices;
u, v: vertex;

begin
T :=
U:={1}

ofy) e—pwhile U # V do begin

let (u, v) be a
o) T « Az mmvﬁ U m”u%memonﬂ\oM*wM e “ Lol
T:=T | {u,)}) oo
U:=UJ{ A
end SR
end; { Prim}

Fig. 7.6. Sketch of Prim’s algorithm.

Ozo simple way to find the lowest-cost edge between U and V—U at each
ste wm to maintain two arra m.ﬁOza array CLOSEST(i] gives the vertex in U
:.z: is currently closest to_vertex i in V—~U. The other array LOWCOST{i]
lves the cost of the edge (i]
" At each step we can scan LOWCOST to find the vertex, say k, in V—U
hat 1s closest to U. We print the edge (k, CLOSEST[k]). W n update the
LOWCOST and CLOSEST arrays, taking into account the fact that k has been

Fig. 7.7. Sequences of edges added by Prim’s algorithm.

added to U. A Pascal version of this algorithm is given in Fig. 7.8. We
assume C is an n X n array such that C[i, j] is the cost of edge (i, j). If edge
(i, j) does not exist, we assume C[i, j] is some appropriate large value.

Whenever we find another vertex k for the spanning tree, we make
LOWCOST[k] be infinity, a very large value, so this vertex will no longer be
considered in subsequent passes for inclusion in U. The value infinity is
greater than the cost of any edge or the cost associated with a missing edge.

The time complexity of Prim’s algorithm is O(n%), since we make n—1
iterations of the loop of lines (4)—(16) and each iteration of the loop takes
O(n) time, due to the inner loops of lines (7)—(10) and (13)—(16). As n gets
large the performance of this algorithm may become unsatisfactory. We now
give apother_ algorithm due to Kruskal for finding minimum-cost spanning
trees whose performance is at most Q(eloge), where e is the number of edges
in the given graph. If ¢ is much less than n°, Kruskal’s algorithm is superior,
although if e is about n”, we would prefer Prim’s algorithm.

O(4?) < procedurelPrim| C: array[l..n, 1..n] of real); -~—> Siho/GF
{ Prim prints the edges of a minimum-cost spanning tree for
with vertices {1, 2, . . . ,n} and cost matrix C on edges }
var
LOWCOST: array[l..n] of real;
CLOSEST: array(l..n] of integer;
i, j, k, min: integer;
{i and j are indices. During a scan of the LOWCOST ar
k is the index of the closest vertex found so far, and

min = LOWCOST[k] } \\\\
begin .
(1) for i := 2 to n do begin N
{ initialize with only vertex 1 in the set U Y. :
2) LOWCOSTI[i] := CI[1, i]; P
3) CLOSESTi] := o
end;

(4) Crk) &—yfor i := 2 to n do begin
{ find the closest vertex k outside of U to
some vertex in U }

5 min := LOWCOST|[2];

(6) k=2

(7N for j := 3 to n do

(8) if LOWCOST[j] < min then begin
O oo el— min .= LOWCOSTL/1;
(10 k:=j

end; $ Ang e s

(1 writeln(k, CLOSEST{k]); { print edge v
(12) LOWCOSTk] := infinity;, { k is added to U }
(13) [forj:=2tondo { adjust costs to U }
(14) if (Clk, j1 < LOWCOST[j]) and

_ Q\QS\QQMN,EAE\NEQV:.E.womm:
(15) o#H)<T LOWCOST(j] := Clk, j1;

(16) CLOSEST[j] := k

end

| end
end; { Prim }

Fig. 7.8. Prim’s algorithm.

v/ chmrm_,m >-E55
inS AL/
w:wvwwn again we are given a connected graph G = (V, E),
= {1,2, ...,n} and a cost function ¢ defined on the edges of E. An

€mm to construct a minimum-cost spanning tree for G is to start with a

ly of the n vertices of G and having no edges. Each

vertex is therefore in a connected component by itself. As the algorithm
proceeds, we shall always have a collection of connected components, and for

@ To build progressively larger components, we examine edges from E, in

.N% each component we shall have selected edges that form a spanning tree.

TR

) x\oaon of increasing oo@m the edge connects two vertices in two different
\W\v\mﬁ\oo nected com

nents, then we add the edge to 7. If the edge connects two

vertices in_the same component, then we_discard the_edge, since it

would

cause a cycle if we added it to the spanning tree for that connected com-

ponent3’When all vertices are in one component, 7 is a minimum-cost _span-

ning tree for G.

Example 7.5. Consider the weighted graph of Fig. 7.4(a). The sequence of
edges added to T is shown in Fig. 7.9. The edges of cost 1, 2, 3, and 4 are
considered first, and all are accepted, since none of them causes a cycle. The
edges (1, 4) and (3, 4) of cost 5 cannot be accepted, because they connect ver-
tices in the same component in Fig. 7.9(d), and therefore would complete a
cycle. However, the remaining edge of cost 5, namely (2, 3), does not create
a cycle. Once it is aceepted, we are done. O

We can implement this algorithm using sets and set operations discussed

in Chapters 4 and 5First, we need a set consisting of the edges in E. We
SoA7 «— then apply the DELETEMIN operator repeatedly to this set td .select edges in

order of increasing cost. The set of edges therefore forms a priority queue,

and a partially ordered tree is an appropriate data structure to use here.

. & We also need to maintain a set of connected components C. The opera-
tions we apply to it are:

1.

MERGE(A, B, C) to merge the components A and B in C and to call the
result either A or B arbitrarily.

FIND(v, C) to return the name of the component of C of which vertex v
is a member. This operation will be used to.determine whether the two
vertices of an edge are in the same or different components.)
INITIAL(A, v, C) to make A the name of a component in C containing
only vertex v initially.

These are the operations of the MERGE-FIND ADT called MFSET,

which we encountered in Section 5.5. A sketch of a program called Kruskal to
find a minimum-cost spanning tree using these operations is shown in Fig.
7.10.

[We can use the techniques of Section 5.5 to implement the operations
used in this program. The running time of this program is dependent on two
factors. If there are e edges, it takes O(eloge) time to insert the edges into
the priority queue.f In each iteration of the while-loop. finding the least cost

1 Note that MERGE and FIND are defined slightly differently from Section 5.5, since C
is a parameter telling where A and B can be found.

f We can_initialize a_partially ordered tree of ¢ elements in O(e) time if we do it all at
once. We discuss this technique in_Section 8.4, and we should probably use it here, since

Fig. 7.9. Sequence of edges added by Kruskal’s algorithm.

edge in edges takes O (loge) time. Thus, the priority queue operations
O(eloge) time in the worst case. The total time required to perform
MERGE and FIND operations depends on the method used to implement
MFSET. As shown in Section 5.5, there are O(eloge) and O(e a
methods. In either case, Kruskal’s algorithm can be fimplemented to fu

I 7 ~
Ofeloge) time.] > ot

Q\\\.\\%\yk

7.3 Traversals

In a number of graph problems, we need to visit the vertices of a graph
tematically. Depth-first search and breadth-first search, the subjects of
section, are two important techniques for doing this. Both techniques ca
used to determine efficiently all vertices that are connected to a given vert:

if many fewer than e edges are examined before the minimum-cost spanning tree is
found, we may save significant time.

