Chapter 2. Knowledge Mapping: Foundation

Chapter Overview

Invisible college, which consists of a small grafphighly productive and networked scientists
and scholars, is believed to be responsible fowtroof scientific knowledge. By analyzing
scholarly publications of these researchers usiglgcts content analysis, citation network
analysis, and information visualization techniqudsjowledge mapping” helps reveal this
interconnected invisible college of scholars aneirtideas. In this chapter, we discuss online
resources that are often used for such analyselsiding: abstracts and indexes, commercial
full-text articles and digital libraries, free fukbxt articles and e-prints, citation indexing gyss

and services, electronic theses and dissertatpaients, and business and industry articles and
reports. These resources can be used to identiipriant authors and inventors, publications
and publication outlets, institutions, countriesl aagions, and subject and topic areas over time.

2.1 Invisible Colleges and Knowledge Mapping

In Diane Crane’s seminal book on “Invisible CollegPiffusion of Knowledge in Scientific
Communities” (Crane, 1972), she suggests that thhes“invisible college,” which consist of a
small group of highly productive scientists and adats, that is responsible for growth of
scientific knowledge. Crane shows that many sdiendisciplines go through similar stages of
initiation, growth, expansion, maturation, and dexl The productive scientists and scholars
form a network of collaborators in promoting andeleping their fields of study. The presence
of an invisible college or network of productiveiestists linking separate groups of
collaborators within a research area has been mvidenany studies (Chen, 2003) (Shiffrin &
Borner, 2004).

“Knowledge Mapping” or “Science Mapping” techniquésised on content analysis, citation
network analysis, and information visualizations li@come an active area of research that helps
reveal such an inter-connected, invisible collegenetwork of scholars and their seminal
publications and ideas.

According to Chaomei Chen in hidapping Scientific Frontierdook (Chen, 2003), Science
Mapping helps “depict the spatial relations betweaesearch fronts, which are areas of
significant activity. Such maps can also simplyused as a convenient means of depicting the
way in which research areas are distributed andvesong added meaning of their
relationships... By using a series of chronicallywssagial maps, one can see how knowledge
advances. Mapping scientific frontiers involves esaV disciplines, from the philosophy and
sociology of science, to information science, staeretrics, and information visualization.”

In a National Academy of Sciences colloquium eaditMapping Knowledge Domains”
(Shiffrin & Bdrner, 2004), the term “mapping knowge domains” (or Knowledge Mapping)
was used to “describe a newly evolving interdisogaly areas of science aimed at the process of
charting, mining, analyzing, sorting, enabling mgtion of, and displaying knowledge.”

Tow forces are contributing to the rapid developmand the overwhelming interest in
Knowledge Mapping (we will use the term to enconsp&sience Mapping in the rest of the
book). First, the availability of online publicatis, from scientific Abstracts and Indexes (A&l),
full-text articles, and online pre-prints, to daitdissertations, multimedia (e.g., videos and
audios) magazine and journal articles, and mudfilad web-accessible patent filings, has made it
possible to more systematically examine the sdientiutputs produced by members of the
invisible colleges. Secondly, the recent advanaestext mining, network analysis, and



information visualization techniques have providedre scalable and accurate methods to
understand and reveal the interconnections betagentific disciplines and scholars.

Excellent research has also been performed in sxdpptonometric approach to improving
our quantitative knowledge of the sources of ecangrowth (Pakes & Sokoloff, 1995; Jaffe &
Trajtenberg, 2002). Some econometric researchers hised patent citations to investigate the
diffusion of technological information across imgtions and over time and space (Jaffe &
Trajtenberg, 2002). Such works often involve ecolsrbased theoretical modeling,
econometric analysis, and parameter estimationcamdhelp draw inferences for knowledge
diffusion or spillover. Interested readers are mef@ to (Pakes & Sokoloff, 1995; Jaffe &
Trajtenberg, 2002).

In this chapter, we provide an overview of onlimsearch resources that are increasingly
available for Knowledge Mapping analysis and weseduin the following chapters of this book.
We then describe the units of analysis and reptagen issues of relevance to such resources.

2.2 Online Resources for Knowledge Mapping
Various online resources are available for mapguigntific knowledge. They vary from

formal to informal publications; from text-basedntwltimedia presentations; and from academic

literature to industry-relevant international pasen

- Abstracts & IndexesA&l contains abstract and index (bibliographiafarmation of a

given article and is used to locate articles, pedaggs, and occasionally books and book
chapters in various subjects. Most abstracts adéxes are available electronically.
Public and university libraries often subscribestch databases and services. Only a very
few biological or scientific databases are seariehdbr free on the Web, primarily
databases generated by the National Library of beedi (ttp://www.nlm.nih.gov),
such as MEDLINE (medicine) or TOXLINE (toxicology)yhere are A&l databases in
almost every subject areas, e.g., BIOSIS (biolo@QMPENDEX (engineering and
technology), ERIC (education), etc.
Commercial full-text journal articles and digitabraries: Many commercial publishers
have made their online content available on the.wWak most prominent service of such
type is provided by th&/eb of Sciencéhttp://scientific.thomson.com/products/wpsa
product of Thomson Scientific. Th&eb of Sciencprovides seamless access to current
and retrospective information from approximately(f research journals in the world.
More recently, many professional societies have antaeir articles available through
various  digital libraries. For example, the ACM & Library
(http://portal.acm.org/dl.cfincontains 54,000 online articles from 30 journafsl 900
proceedings of the Association for Computing Maehyn The IEEE Computer Society
Digital Library (http://www.computer.org/portal/site/csdl/index)smprovides online
access to eighteen IEEE journals and 150 procegdingpmputer science.
Free full-text articles and e-printShere is also a grass-root movement initiatedhiay
academic community to provide free access to jdsraad books. For example, on the
Free Medical Journalsite (ttp://www.freemedicaljournals.coip/you can find many
important academic journals made available onfiree and in full-textHighWire Press
(http://highwire.stanford.edul/lists/freeart)dtla service affiliated with the Stanford
University, is believed to be the largest archivdree full-text science articles. As of
December 20, 2006, it provides access to more it@amillion free full-text articles in
many subject disciplines. In some scientific diogs, e-prints (scientific or technical




documents circulated electronically to facilitateep exchange, including preprints and
other scholarly papers) are strongly encouraged auepted by the community. For
example, thearXiv.org service [ttp://arxiv.org), supported by Cornell University,
provides open access to about 400,000 e-printshiysi€s, Mathematics, Computer
Science, and Quantitative Biology.

Citation indexing systems and servicés:addition to accessing bibliographic and full-
text content of scientific articles, aggregated amtlvidualized citation information is
critical in the assessment of highly-cited, infltiah papers and authors. Tlgcience
Citation Index (http://scientific.thomson.com/products/sgi/ a product of Thomson
Scientific, provides access to bibliographic infatran, abstracts, and cited references in
3,7000 world’s scholarly science and technical pals covering more than 100
disciplines. A recent service provided by Google Scholar
(http://scholar.google.com/intl/en/scho)aralso supports broad access to scholarly
literature. A user can search across many disepland sources: peer-reviewed papers,
theses, books, abstracts, and articles. The serf@atires many advanced search
functionalities, including ranking articles basead lmw often an article has been cited in
other scholarly literatureCiteSeer (http://citeseer.ist.psu.edu/citeseer.htnd another
example of advanced search system (for computeindmeination science literature) that
is built upon citation information. It was one dfet first digital libraries to support
automated citation indexing and citation linking.

Electronic Theses and Dissertations (ETD) addition to formal literature published in
journals, magazines, and conference proceedingd).Pénd Master's theses and
dissertations constitute a significant part of stfee knowledge generated. University
Microfilms (UMI) was founded in 1938 to collect,dex, film, and republish doctoral
dissertations in microfilm and print. Currently UBlidissertation abstract database has
archived over 2.3 million dissertations and mastéireses. Some two million of them are
available in print, microfiim, and digital formatyvia its ProQuest system
(http://il.proquest.com/brand/umi.shimMore recently, the Networked Digital Library
of Theses and Dissertations (NDLTER{p://www.ndltd.orgf was formed to promote the
adoption, creation, use, dissemination, and presierv of electronic analogues to the
traditional paper-based theses and dissertations. BAD, graduate students learn
electronic publishing as they engage in their neteand submit their own work, often in
a rich multimedia format. Universities learn abdigital libraries as they collect, catalog,
archive, and make ETDs accessible to scholars wattd

Patents Patent publications have often been used inuatialy science and technology
development status worldwide (Narin, 1994). Whileagemic literature represents
fundamental scientific knowledge advancement; patemeveal scientific and
technological knowledge that has a strong poteritielcommercialization. There are
several governmental or intergovernmental pateffises that control the granting of
patents in the world. United States Patent and émadk Office (USPTO,
http://www.uspto.goy, European Patent Office (EPOnttp://www.european-patent-
office.org/index.en.php and Japan Patent Office (JPOp://www.jpo.go.jp) issue
nearly 90 percent of the world’s patents (Kowakskal, 2003). USPTO handles over 6.5
million patents with 3,500 to 4,000 newly granteatgmts each week. EPO handles over
1.5 million patents with more than 1,000 newly dgeahpatents each week. JPO handles
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over 1.7 million patents with 2,000 to 3,000 neghanted patents each week. All three
patent offices provide search systems for web-baseéss.

Business and industry articles and reportSritical science and technology knowledge
eventually flows from academic literature and pegeto various industries and
companies. At the other end of the knowledge mapp@sources are various business
and industry articles and reports; some are regoirte general-interest science and
technology magazines and newspapers, while otrersbe purchased from industry-
specific consulting firms. For example, timely,depth industry-specific or technology-
specific reports are available at sites such ageBter (http://www.forrester.com), IDC
(http://www.idc.con), and Gartner,http://www.gartner.cory among others.

Units of Analysis and Representations
For knowledge mapping analysis, pre-processingwfonline resources is needed. Each

article, patent, or report needs to be processedetdify key indicators for further analysis and
comparison. Among the most common units of analfiggiknowledge mapping are: authors or
inventors, publications and publication outletstitntions (companies or universities), countries
or regions, subject and topic areas (broad categor specific topics), and timeline (publication
date). These units of analysis are used in theygitesented in this book.

Authors or inventorsThe most critical unit of analysis for knowledgepping consists
of the researchers, authors, and inventors whtharproductive members in the invisible
college. Extracting author or inventor field fromarious knowledge sources is a non-
trivial task. Although html, XML, and structured tdbase representations have made
automatic name identification easier (than in trepgr-based format), author name
extraction and identification is difficult in diffent cultural contexts (e.g., recognizing
Chinese names), especially when a publication aoésontain complete first and last
names. For example, how many different researdhethe name of “W. Zhang” or “L.
Liu” are there in the Chinese Academy of Scienaa®e (of the most productive and
largest academic research institutions in the Warld

Publications and publication outletdDifferent academic publications have different
levels of prestige, most are measured based om hmgact Factor (an aggregate,
normalized number based on citation counts). Fampte, the Impact Factor &cience

is 30.927 in 2005; while th&ournal of Computational Biologympact Factor is 2.446.
There are many other publications that do not dxare an Impact Factor score. In order
to determine the value and impact of a researchesi¥, quality is more important than
guantity. Quality is often determined based on phestige of a publication outlet. In
addition, the number of citations is also a majetedminant. A seminal or landmark
paper can often help define a person’s career maricular field. For example, while
many good academic articles are cited hundredsneft Albert Einstein’s seminal paper
on “Can quantum-mechanical description of physreallity be considered complete?”
that appeared ifPhysical Reviewn 1935 was cited 3,753 times (based on a seaich o
Google Scholgr Based on analysis result reported bypcienceWatch
(http://www.sciencewatch.coip/the most cited paper of the past two decade83(19
2002) was: Chomczynski, N. Sacchi, "Single-stepho@tof RNA isolation by acid
guanidinium thiocyanate phenol chloroform extragtidAnalytical Biochemistryl62(1):
156-9, 1987. The paper received a citation coudt9p62 (based on data frohrhomson
Scientifics Web of Science). However, correctly parsing anénidying unique
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publication names is a difficult task as many dasa&ls record those names in cryptic,
short-hand forms, e.gAnalyt. Biochem, Proc. natn. Acad. Sci., J. bidhe@., J. gen.
Physiol., Physiol, Londetc.While many are easily recognizable by domain siges)ta
computer program would have difficulty parsing theonrectly.

Institutions: While researchers publish their research, it iserofthe institutions
(companies or universities) that they reside oweirtmtellectual property. An analysis
based on institutional output and productivity daglp depict an institution’s relative
strength and position in the competitive knowletiyedscape. Knowledge mapping can
help reveal not just the invisible college of reshars, but the “invisible college of
institutions.” A comparison between basic univgrsiesearch and applied industry
invention can also help understand the progresswinmpact of knowledge creation.
Countries or regionsSimilar to institutional analysis, it is often impant to analyze
publications (especially patents) based on theuntrtes or regions (e.g., Europe vs.
Asia) of origin. Such kind of analysis is usefut fitepicting a competitive international
landscape and is often relied upon for governmergakarch policy and funding
decisions. For example, the US National Nanoteauylnitiative (NNI) has performed
excellent cross-regional analyses for worldwideatechnology research, development,
and funding.

Subject and topics area®icademics are often defined by their traditionehdemic
boundaries in colleges or departments. Howeversaarcher could work in several
(often related) subject or topic areas. Academiclipation outlets are also defined by
their fields of interest and focus. While most amad journals provide a list of
interested topics; some information resources anermomprehensive in their listing. For
example, the USPTO provides a detailed patent iizgson scheme (USPC), which
consists of two levels. The first level contain®oath450 categories; while the second
contains about 160,000 categories. In additionhesé predefined subject categories,
important topic-specific keywords, phrases, andcepts can be extracted from the title,
abstract, and text body of an article. Howeveraaded Natural Language Processing
(NLP) techniques are needed for such topic ideatiibn purposes.

Timeline All scientific disciplines evolve over time. Mosf the online resources for
mapping scientific knowledge contain explicit pehlion dates. Dynamic analysis and
visualization of changes in research topics anatioit networks could help reveal the
advancement in scientific knowledge.

Questions for Discussion

What are other additional informal online resourtiest could be used for knowledge
mapping?

How can the Web and social networking sites helpmate the “invisible college” of
scholars and researchers?

How can multimedia contents (e.g., tables, imagbésios, audios, and videos) produced
by scholars be analyzed to reveal knowledge gesetrata scientific discipline?



Chapter 3. Knowledge Mapping: Analysis Framework

Chapter Overview

Three types of analysis are often adopted in kndgdemapping researctext mining, network
analysis, and information visualization.Text mining consists of two significant classes of
technique: Natural Language Processing (NLP) anaeod analysis. In NLP, we describe
automatic indexing and information extraction tages that are effective and scalable for
concept extraction. In content analysis, clusterimdgorithms, self-organizing map,
multidimensional scaling, principal component asay co-word analysis, and PathFinder
network are techniques often adopted for knowledggping analysis. Network analysis is
reviewed based on research in social network aisa{§g8NA) and complex networks. In SNA,
we review research that detects sugroups, disc@agterns of interactions, and identifies roles
of individuals. In complex networks, we summarissearch in network models, topological
properties, and evolving networks. The last seatemiews information visualization research of
relevance to knowledge mapping. Seven informateprasentation methods are discussed: 1D,
2D, 3D, multi-dimensional, tree, network, and temghoTwo useful user-interface interaction
methods, overview + detail and focus + context,adse presented. We believe these knowledge
mapping analysis and visualization methods can jiead to most of the online resources
presented earlier.

3.1 Text Mining

Text mining, sometimes alternately referred toteg data mining refers generally to the
process of deriving high qualityinformation from text (according to Wikipedia,
http://en.wikipedia.org/wiki/Text_mining). Text mmy usually involves the process of
structuring the input text (usually parsing, alongh the addition of some derived linguistic
features and the removal of others, and subseqguanbtechnologyrtion into aatabasg
deriving patterns within the structured data, amdlly evaluation and interpretation of the
output (Chen & Chau, 2004). Typical text miningkesnclude entity and relation extraction,
text categorizationtext clustering, sentiment analysis, and docunsmhmarization (Chen,
2001).

For knowledge mapping research, text mining candssl to identify critical subject and
topic areas that are embedded in the title, alistaacl text body of published articles. While
most structured fields (such as authors, publioatigtlets, dates of publication, institutions, petc.
can be parsed from online resources, extractingnmgsa or semantics from multimedia
publications requires advanced computational tegles. Different processing algorithms are
needed for different media types, e.g., text (Ndtuanguage Processing), image (color, shape,
and texture based segmentation), audio (indexingsdynd and pitch), and video (scene
segmentation). Non-text, multimedia content extosctechniques are still under active research
and development. Our discussion will be limitedexi-based techniques.

3.1.1 Natural Language Processing:

Automatic indexing: Automatic indexing (Salton, 1989) is a method owonly used to
represent the content of a document by means @ctownvof keywords or terms. The Bag of
Words (BOW) representation has often been usedb@seline implementation for information
retrieval and text mining research. When implemegénising multi-word matching, a Natural
Language Processing noun-phrasing technique camreag richer linguistic representation of



document. Most noun phrasing techniques rely orombmation of part-of-speech-tagging
(POST) and grammatical phrase-forming rules. Th@ach has potential to improve precision
over other word-based document indexing technigbeamples of noun-phrasing tools include
MIT’s Chopper, Nptool (Voutilainen, 1997), and Asiza Noun Phraser (Tolle & Chen, 2000).

Information extraction : Information extraction is another computationaffective method
to identify important concepts from text documeritscan extract entities of interest (also
referred to as entity extraction), such as pergerms, “John Doe”), locations (e.g., “Washington,
D.C.”), and organizations (e.g., “National Scien€eundation”) and identify relationships
between entities. Other entities that are ofterraei¢d from unstructured textual narratives
include: dates, times, number expressions, doitesuents, email addresses, and Web addresses
(URLs). Such information can be extracted baseckitmer human-created rules or statistical
patterns occurring in text. Most existing infornaaitiextraction approaches combine machine
learning algorithms such as neural networks, decisiee, Hidden Markov Model, and entropy
maximization with a rule-based or a statisticalrapph. The best systems have been shown to
achieve more than 90% accuracy in both precisiah ragall rates when extracting persons,
locations, organizations, dates, times, currenceas] percentages from newspaper articles
(Chinchor, 1998).

While automatic indexing and information extracti@echniques are computational scalable
and feasible for large-scale knowledge mapping arebe more advanced and fine-grained
computational linguistics techniques are being tgpex in the NLP community. Sentence-level
analysis including context-free grammar and tramsétional grammar can be performed to
represent grammatically correct sentences. In iaddisemantic analysis based on techniques
such as semantic grammar and case grammar carebeasepresent semantic (meaning) in
sentences and stories. However, most of thesesdalk linguistic and semantic analysis
techniques lack scalability across different dormaamd are not yet suitable for large-scale
knowledge mapping research (Chen, 2001).

3.1.2 Content Analysis:

Based on automatic indexing or information ext@cttechniques, documents are often
represented as a vector of features (i.e., keywardsn phases, or entities). Articles that are
collected and grouped based on authors, institsititmpic areas, countries, or regions can be
analyzed to identify the underlying themes, patierar trends. Popular content analysis
techniques includeClustering Algorithms, Self-Organizing Map (SOM)uldlimensional
Scaling (MDS), Principal Component Analysis (PCEp-Word Analysis, and PathFinder
Network

Clustering Algorithms: Everitt (Everitt, 1974) defines a cluster as & of entities which
are alike, and entities from different clusters ao¢ alike.” Clustering algorithms are used to
organize (group) similar documents or topics iniexdrchical structure. There are two types of
hierarchical cluster analysis: agglomerative anistie. The agglomerative approach starts with
each point as a separate cluster. Each point igadesuccessively into a larger cluster based on
their degree of similarity. Conversely, divisiveetarchical cluster analysis begins with only one
large cluster of points. The large cluster is dbdddsuccessively into smaller clusters based on
their degree of similarity. Both approaches prodacdendrogram to represent a hierarchy of
points and their associated clusters. Hierarclagglomerative clustering (HAC) algorithms are
the most commonly used method for document clugje(Willett, 1988). One of the most
popular HAC algorithms is Ward’s clustering (Wat®63). Over time, it has been widely used



in various domains: astrophysics, pattern recogmitapplied statistics, etc. in 1984, Murtagh
proposed the Reciprocal Nearest Neighbor (RNN) @pgr (Murtagh, 1995), which is
significantly faster than the original Ward’'s implentation. The time complexity of the
algorithm was reduced from O{Nto O(N). Roussinov and Chen (Roussinov & Chen, 1999)
performed a systematic comparison of the RNN-badérd's algorithm with the SOM
technique for document clustering. Both technigarescomputationally efficient for large-scale
knowledge mapping applications.

Self-Organizing Map (SOM):. The Self-Organizing Map, developed by Kohonenh#men,
1989; Kohonen, 1995), is an unsupervised, two-Eyereural network used for clustering and
dimension reduction. An advantage of SOM over ottiastering algorithms is its ability to
visualize high dimensional data using a two-dimemai grid while preserving similarity
between data points. It is a technique similar toltMDimensional Scaling (MDS) (Jain &
Dubes, 1988). In SOM, each input node correspoads dimension (e.g., a keyword). Each
output node corresponds to a node in a two-dimeasigrid. The network is full connected in
that every output node is connected to every immate with some connect weight. During the
training phase, the inputs (e.g., documents reptedeas vectors of keywords) are presented
several times to the SOM to decide the proper piacg of the inputs on the output grid.
Connection weights associated with the input anguiunodes are adjusted (learned) to ensure
that similar inputs are grouped in a close proxmoin the two-dimensional grid. After training,
all inputs (e.g., documents) can be grouped ancedl@an a two-dimensional map. Topics (of
similar documents) are often represented as regarthe map, where larger regions represent
more important topics. The SOM-generated categaviee found to be comparable to those
generated by human subjects (Orwig, et al., 19€hen and his team (Chen et al., 1996)
developed a multi-layered SOM (ET-Map) to categord4d0,000 Internet web pages according
to their content. Kohonen and his colleagues (Kehoret al., 2000) adopted SOM to map 6.8
million patent abstracts onto a one million-nodeMs@everal SOM implementations have taken
advantage of the sparse input feature vector reptason to improve the speed and scalability
of their algorithms.

Multidimensional Scaling (MDS): Multidimensional Scaling and Principal Component
Analysis (PCA) are two classical and widely usathteques for dimension reduction. They are
well known, easy to implement, and computationafficient. One way to apply MDS is to take
a set of p-dimension vectors and to approximatetbe the two- or three-dimensional Cartesian
coordinate space. Beginning with the matrix of alise or dis-similarity between objects, we
first compute an initial configuration using SinguValue Decomposition (SVD) (Cox & Cox,
1994; Forsythe, et al., 1977; McQuaid, et al., 9%We then measure the information loss
between the original matrix and the initial configiion using the STRESS (standardized
residual error sum of squares) metric of Kruskaku@kal, 1964). It then finds a new
configuration with smaller information loss tharethitial configuration by using an isotonic
regression algorithm (Grotzinger & Witzgall, 1984) obtain fitted distances and a conjugate
gradient descent algorithm to optimize. The al¢onitrepeats until a threshold information loss
is reached or until a threshold number of iteraimperformed. Similar to SOM for knowledge
mapping, MDS produces a two-dimensional displaycWwhagrees with human perception of
document similarity (McQuaid, et al., 1999). Albased on SVD, Latent Semantic Indexing
(LSI) uses aterm-document matrixwhich describes the occurrences of terms in decisn
(Deerwester, at al., 1990). It then transformsdhginal matrix into a relationship between the
terms and (latentyoncepts and a relation between the documents and the saneepts. The




terms and documents are now indirectly related utlinothe concepts. LSl can be sued
effectively for concept extraction and associafammknowledge mapping.

Principle Component Analysis (PCA):Principal component analysis is central to the ytud
of multivariate data. Although one of the earligsiltivariate techniques, it continues to be the
subject of much research, ranging from new modateld approaches to algorithmic ideas from
neural networks. It is extremely versatile with Bggtions in many disciplines (Jolliffe, 2002).
The central idea of PCA is to reduce the dimenditynaf a data set in which there are a number
of interrelated variables, while retaining as mashpossible the variation present in the data set.
The reduction is achieved by transforming to a sewvof variables, the principal components,
which as uncorrelated, and which are ordered spbthigafirst few retain most of the variation
present in all of the original variables. Compuatof the principal components reduces to the
solution of an eigenvalue-eigenvector problem fopasitive-semidefinite symmetric matrix
(Jollife, 2002). In knowledge mapping, PCA can Isedito extract principal components that
represent interrelated keywords or topics.

Co-word Analysis: Word-occurrence patterns in text originated in tweword analysis
method developed in the 1980s (Callon et al., 1986 outcome of co-word analysis is
typically depicted as a network of concepts. Giaerorpus oN documents, each document can
be indexed by a set of unique keywords or termswdf terms, itand { appear together in
multiple documents, their probability of co-occumte can be computed using different
formulas. A matrix of term co-occurrence definesetwork of concepts. In some past research,
such a matrix is referred to ag@ncept spac€Chen et al., 1996; Chen et al., 1997). The oaigin
co-word analysis prunes a concept using a triammgiguality rule on conditional probabilities. If
a shorter path can be found from teyrtotf than the direct path, then the shorter one isearhos
By raising or lowering a threshold, the number afid/ links in a network can be decreased or
increased.

PathFinder Network (PFNET): According to Boérner et al.,, (Borner, et al., 2003),
“PathFinder algorithms take estimates of the praas between pairs of terms as input and
define a network representation of the items thasgrves only the most important links.” The
input is pairs of terms, and the pairs are linkedatput only if their co-occurrence weights are
the highest in their respective vectors. By empiagionly the most prominent links, PFNET
reduces the user’s cognitive overload in browsinge@vork of interrelated concepts. (White, et
al., 2003). In PENET, paths are required not thate the triangle inequality(a,c) d(a,b)+
d(b,c) whered is the distance between poimtsh, andc. A spring embedder algorithm (Kamada
& Kawai, 1989) is often used to display the netwofkterms based on the relative strengths
between any pairs of terms. The algorithm aimsréwide a layout that avoids crossed links and
overlapping nodes. White et al. (White et al., 2088opted both SOM and PFNET in creating
“localized” mapping of 24 most relevant terms givarsingle input term, a medical subject
heading, a co-cited author, or a co-cited journaiftheProceedings of the National Academy
of Sciences (PNAS})971-2002. Mane and Borner (Mane & Boérner, 2088)pted Klienberg’s
burst detection algorithms, PFNET, and graph layeahniques to generate maps that support
the identification of major research topics anchdeinPNAS 1982-2001. Both the general co-
word analysis and the PFNET algorithm implementatiave been shown to be valuable for
mapping scientific knowledge.



3.2 Network Analysis
Recent advances isocial network analysigand complex network$iave provided another
means for studying the network of productive scisolia the invisible college.

3.2.1 Social Network Analysis:

A collection of methods that are recommended iraiture for studying networks is Social
Network Analysis (SNA) techniques (McAndrew, 19%parrow, 1991; Xu & Chen, 2005a).
Because SNA is designed to discover patterns efantions between social actors in social
networks, it is especially apt for co-authorshipwak analysis. Specially, SNA is capable of
detecting subgroups (of scholars), discoveringrtpaitern of interactions, identifying central
individuals, and uncovering network organizatiom atructure. It has also been used to study
criminal networks (Xu & Chen, 2005a; Xu & Chen, 300.

Subgroup Detection: A collaboration or co-authorship network can betipaned into
subgroups consisting of individuals who closelyeratt with each other. Given a network,
traditional data mining techniques such as clustalysis may be employed to detect underlying
groupings that are not otherwise apparent in tha.daurt (Burt, 1976) applied hierarchical
clustering methods based on structural equivalemeasure (Lorrain & White, 1971) to detect
subgroups in a social network. Two nodes are stralty equivalent if they have identical links
to and from all other nodes in the network. Sinegfgrtly equivalent nodes rarely exist in
reality, this measure is relaxed to be an indicafoextent to which two nodes are equivalent.
With structural equivalence measures between nodesierarchical clustering algorithm
partitions a network into subgroups so that memhetisin a group are more similar to each
other and members belonging to different groupsnaoee different from each other. Cliques
whose members are fully or almost fully connectad also be detected based on clustering
results.

Discovery of Pattern of Interactions: Patterns of interactions between subgroups can be
discovered using an SNA approach calockmodel analysi$§Wasserman & Faust, 1994; Xu
& Chen, 2005b). This approach was originally desdyno interpret and validate theories of
social structures. When used in collaboration oawcthor network analysis, it can discover
patterns of inter-group interactions and associati@nd help reveal the overall structure of
networks under study. Blockmodeling usually followkistering, and then determines the
presence and absence of an association betweend pabgroups by comparing the density of
the links between these two subgroups with a pneelefthreshold value. When the link density
is greater than the threshold value, an inter-graggociation presents, indicating that these two
subgroups interact with each other constantly ams thave a strong association. Using
blockmodeling, a complex network is reduced tonapder structure by summarizing individual
interaction details into interactions between gsyugo that the overall structure of the network
becomes more salient.

Roles of Individuals: Centrality deals with the roles of individuals innatwork. Several
measures, such aegree, betweennesad closenessare related to centrality (Wasserman &
Faust, 1994). The degree of a particular nodeasittmber of direct links it has; its betweenness
is the number of geodesics (shortest paths betapgriwo nodes) passing through it; and the
closeness is the total number of all the geoddsetween that particular node and every other
node in the network. Although these three measamesll intended to describe the importance
or centrality of a node, they have different intetptions for the roles network members play.
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An individual with high degree, for instance, mawpilies his or her leadership; while an
individual with high betweenness may be a gatekeepeonnector in the network.
3.2.2 Complex Networks:

Complex networks of individuals and other entitiese been traditionally studied under the
random graph theory (Albert & Barabasi, 2002). Hogrelater studies suggested that real-world
complex networks (such as collaboration or co-austhip networks) may not be random but may
be governed by certain organizing principles. Tgnempted the study of real-world networks.
These studies have explored the topology, evolwtmmhgrowth, robustness and attack tolerance,
and other properties of networks.

Network Models: Three broad models of network topologies have geter(Albert &
Barabasi, 2002)random graphs small-world networks, andscale-free networks. Random
graphs are networks in which any two nodes are @tted with a fixed probabilitg, thus edges
are distributed randomly among nodes of the netwSrkall-world networks are not random
networks and have relatively small path lengthgpdegheir often large size (Watts & Strogatz,
1998). In scale-free networks the degrees (nunobexdges) of nodes follow a power law
distribution (Barabasi & Albert, 1999). Some of tetworks that have been studied include the
World Wide Web (Albert at al., 1999; Kumar et &000), citation networks (Jeong, et al.,
2000), and co-authorship networks (Newman, 200Tagse networks were found to have
similar topological, evolutionary and robustnesarelsteristics (Albert & Barabasi, 2002). They
were found to be predominantly small-world and sdete.

Topological Properties: Topological properties of networks help us study tletwork as a
whole instead of studying the individual constitisenThree concepts dominate the statistical
study of the topology of networksmall-world clustering anddegree distributionAlbert &
Barabasi, 2002).

Small-world: The small-world concept is based on the fact tage networks often have
small path lengths between their nodes. This cdrisggn important one as it can depict the ease
of communications within a network. Communicati@as range from the spread of disease in
human populations to the spread of ideas in alooiiion network. A widely cited example of
a small-world network study is the “six degreesseparation” study by psychologist Stanley
Milgram, who concluded that there was a path otiagctfances with a typical length of about six
between most pairs of people in the United Stafeslfen, 1989). The small world property is
measured by the average shortest path length shalbtained by averaging the shortest paths
between all pairs of nodes in a network (Albert &r&basi, 2002). For instance, the average
shortest path length between two actors in a nétwbmovie actors (225,226 nodes) was found
to be 3.65 (Watts & Strogatz, 1998). The averagetsht path length between co-authors in the
MEDLINE collection (1.5 million nodes) was found lbe 4.6 (Newman, 2001a). There has been
research on the phenomenon that leads to the ghtirtlengths in real world networks. It has
been suggested that shortcuts between nodes tietwige may not be connected reduce the
average path length in small world networks (Wat899). This is especially true in social
networks where people are likely to have friendghwither individuals outside their immediate
friend circle.

Clustering: Cliques that represent circles of friends and acgaiaces often form in social
networks. For instance, authors often collaborath the same set of people in a co-authorship
network. Cliques also form in networks that do ineblve people, for example, related websites
on the Web often point to each other through hyplesl This inherent tendency to cluster is
qguantified by the clustering coefficient (Watts &®&atz, 1998). The clustering coefficient is
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measured by the ratio of the number of edges tkiat @@ a network to the total number of

possible edges (Albert & Barabasi, 2002). Real-évarétworks tend to have relatively high

clustering coefficients as compared to random ggapphe movie actor network had a clustering
coefficient of 0.79 (Watts & Strogatz, 1998) ane@ tMEDLINE co-authorship network had a

coefficient of 0.066 (Newman, 2001), both values several orders of magnitude higher then
their random counterparts.

Degree distribution:Nodes in a network have different number of edgamecting them.
The number of edges connected to a node is cdBedegree. The spread of node degrees is
given by a distribution functioR(k), which gives the probability that a randomly stdecnode
has exactlyk’ edges (Albert & Barabasi, 2002). The distributfanctions of most real world
networks follow power law scaling with exponentaging from 1.0 to 3.0 Albert & Barabasi,
2002). The movie actor network has a power law eegtistribution with an exponent of 2.3
(Watts & Strogatz, 1998). The MEDLINE co-authorshgtwork was found to have an exponent
of 1.2 (Newman, 2001a). The degrees of nodes aceused to study the growth and evolution
of a network.

Using data from three bibliographic databases ialogy, physics, and mathematics,
networks are constructed in which nodes are seisntand two scientists are connected if they
have coauthored a paper (Newman, 2003). Newmanvasiegis network topological properties
to answer a board variety of questions about coltiion patterns, such as the number of papers
authors write, how many people they write them witvhat the typical distance between
scientists is in the network, and how patterns alfaboration vary between subjects and over
time.

Evolving Networks: Most real-world networks are not static and grow ttuthe addition of
nodes and/or links. For instance, the World WidebVeows exponentially by the addition of
new web pages and a co-authorship network growtbdnaddition of collaborators. The growth
leads to changes in the topological characteristitee networks. Albert and Barabasi (Albert &
Barabasi, 2002) identified two factors in the evoln of a scale free network: (1) growth:
networks expand continuously by adding new nodes &) preferential attachment: new nodes
attach preferentially to nodes that are already w@inected, an effect called “rich-get-richer.”
The preferential attachment concept assumes thgirtibability that a new node will connect to
an existing node depends on the degree of the nodehe higher the degree pfthe higher the
probability that new nodes will attach to it. Thagtional form of preferential attachme®(k))
for a network can be measured by observing thewpdesent in the network and their degrees
at a particular timet. After adding new nodes (timet#1), plotting the relative increase as a
function of the earlier degree gives th@(k) function (Jeong, at al., 2003). Preferential
attachment has been studied for citation and cloeasiiip networks, actor network and the
Internet and has been found to follow the power dastribution (Jeong, et al., 2003; Newman,
2001b). In other casad(k) may grow linearly till a point and then fall offhis usually happens
at high degrees implying that high degree nodesunable to attract new nodes. For instance,
Newman (Newman, 2001b) found that individuals vatlarge number of collaborators in a co-
authorship network did not attract many new ones.

Constraints on the number of links that a node atiract may be due to aging or cost
(Amaral, at al., 2000). Since the growth of thewwgk may be over time, some high degree
nodes might become too old to participate in thevaek (e.g., actors in a movie network). It
might also become too costly for a node to attach karge number of nodes (e.g., a router in a
network slows down when it has too many connecjio@®nstraints on the growth may be
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domain specific and have been studied in many dwnakor instance, in plant-animal
pollination networks, some animals cannot pollinaggtain plants; hence a link cannot be
established (Jordano, at al., 2003). This is amng@ka of a cost constraint. In criminal networks,
trust may restrict the growth of networks. Crimiaald terrorists do not include many people in
their inner trust circle (Klerks, 2001). In additiodisruption might restrict growth in criminal
networks. Individuals may get jailed, wounded dteki and thus not contribute to the growth
(Xu & Chen, 2005b).

3.3 Information Visualization

The last step in the knowledge “mapping” proceds isiake knowledge transparent through
the use of various information visualization (orppeng) techniquednformation representation
anduser-interface interactiomre two dimensions often considered in informatr@ualization
research (Zhu & Chen, 2005).

3.3.1 Information Representation:

Shneiderman (1996) proposed seven types of infeomaépresentation methods including
the 1D (one-dimensional), 2D, 3D, multi-dimension, tneetwork.andtemporalapproaches. We
use this framework as the basis to review relatedarch and present selected examples.

1D representation: The 1D approach represents abstract informationnesdimensional
visual objects and displays them on the screenlimear or a circular manner (Eick et al, 1992;
Hearst, 1995). 1D representation has been appliedisplay either the contents of a single
document (Hearst 1995) or an overview of a coltlecof documents (Eick et al., 1992). Colors
usually represent some attributes of each visugctbFor instance, colors indicate type of
document in the SeeSoft system (Eick et al., 129®) depict the location in a document of
search terms in Tilebar (Hearst, 1995). Figuredisplays an interface of the tile bar that shows
the occurrence of search terms in documents. Thaess of each tile indicates the frequency of
a search term in a document.

Figure 3-1 TileBar uses 1D representation to shwnmérm-document relevance
(http://www.acm.org/sigchi/chi95/Electronic/docunipepers/mah_fg4.g® 1995 ACM, Inc.)
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2D representation: A 2D approach represents information as two-dinograd visual
objects. Visualization systems based on 2D outpa self-organizing map (SOM) (Kohonen,
1995; Chen at al., 1996; Huang et al., 2003; Huahg@|., 2004) belong to this category. Such
systems display categories created over a lardection of textual documents, with the layout
of each category based s location in the two-dimensional output of th©M. Spatial
proximity on the interface represents the semaptaximity of the categories created. The
challenge in this approach is to help users detll aiarge number of categories that have been
created for the large volume of textual data. Tlamdc@rMap system described in Chen et al.
(2003) adopted the SOM and the Arizona Noun Phr@lgte and Chen, 2000) to generate a
subject map automatically. Figure 3-2 presentsdamsecutive screen shots, displaying the top-
level categories and sub-categories under the @atenf “Liver Neoplasm.” The empirical
study described in Chen et al. (2003) indicatestthia approach generated a meaningful subject
hierarchy to supplement or enhance human-genengeatchies in digital libraries.
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Figure 3-2. Example for 2D representation: Therfatee of CancerMapCategory “Liver
Neoplasm” was selected at the top level and thensap of “Liver Neoplasm” was displayed

| Carcinoma, Hepatocellular],

Liver Diseases.

3D representation: A 3D approach represents information as three-dimenisivisaal
objects. One example is the WebBook system (Caul,,e1996) that folds web pages into three-
dimensional books. Realistic metaphors such as sq@ard, et al., 1996), bookshelves (Card, et
al.,, 1996), or buildings (Andrews, 1995) are empbbyto depict abstract information.
Visualization systems using 3D version of a treeetwork representation also belong to this
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category. One example is the 3D hyperbolic treateckby (Munzner, 2000) to visualize large-
scale hierarchical relationships. Figure 3-3 sh@aseenshot of WebBook, where the book
metaphor is applied to organize web pages fronsdinee web site.

Figure 3-3. Example for 3D representation: The Bk
(http://acm.org/sigchi/chi96/proceedings/papers/Gaia txt.htm)
©1996 ACM, Inc.)
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Multi-dimensional representation: Themulti-dimensionabpproach represents information
as multi-dimensional objects and projects them mtihree-dimensional or a two-dimensional
space. This approach often represents textual demisnmas a set of key terms that identify the
theme of a textual collection. A dimensionality wetion algorithm such as multidimensional
scaling (MDS), hierarchical clustering, principaingponents analysis (PCA), or self-organizing
map (SOM) is used to project document clustershemes into a two-dimensional or three-
dimensional space. The SPIRE (Spacial Paradignmnformation Retrieval and Exploration)
system presented in Wise et al. (1995) and the afgin system in (Boyack et al., 2002) belong
to this category. Figures 3-4 and 3-5 display tywes of visualization developed for the SPIRE
system. The Galaxy (Figure 3-4) clusters 567,485tracts of cancer literature based on the
semantic similarity, whereas the ThemeView (Fig8+®) visualizes relationships among topics
of a collection of document. Glyph representati@mother type of multi-dimensional
representation, uses graphical objects or symbaispresent data through visual parameters that
are spatial (positions x or y), retinal (color aside), or temporal (Chernoff, 1973). It has been
applied in various social visualization techniqteslescribe human behavior during computer-
mediated communication (CMC) (Zhu & Chen, 2001; Bxr2002).
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Figure 3-4. Example for mlti-dimensional represéota Galaxy visualization of text
documentsHitp://www.pnl.gov/infoviz/gal_cancer800.gifeprinted with permissions)

“Ga\axy view of 1 00,000 cancer literature abstracts

Figure 3-5. Example for multi-dimensional represéioh: ThemeView -The height of
peak indicates the strength of a given topic in thellection of document
(http://www.pnl.gov/infoviz/theme_cnn800.gifeprint with permission).
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\ rr:l ira fein

Tree representation: Thetreeapproach is often used to represent hierarchitaioaships.
The most common example is an indented text ligfteOtree-based systems include the Tree-
Map (Johnson & Shneiderman, 1991), the Cone TresbdRson et al., 1991), and the
Hyperbolic Tree (Lamping et al., 1995). One cruathhbllenge to this approach is that the
number of nodes grows exponentially as the numbé&ee levels increases. As a consequence,
different layout algorithms have been applied. Fostance, the Tree-Map (Johnson &
Shneiderman, 1991) allocates space according tibwads of nodes, while the Cone Tree
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(Robertson et al., 1991) takes advantage of the/i80al structure to pack more nodes on the
screen. Figure 3-6 displays the visual interfacehef Cat-a-Cone system (Hearst and Karadi,
1997) that applies the 3D Cone Tree to visualiazanchies in Yahoo. The Hyperbolic Tree

(Lamping et al., 1995), on the other hand, projscis-trees on a hyperbolic plane and puts the

plane into the range of display. 3D version of kiyperbolic tree has also been developed by
Munzner (2000) to visualize large-scale hierarcliregure 3-7).

Figure 3-6. Example for tree representation: Cabiae tree that displays hierarchies in
Yahoo. fttp://www.sims.berkeley.edu/~hearst/cac-overviemlh@ 1997 ACM, Inc.)
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Figure 3-7. Example for network representation:H3fperbolic space
(http://graphics.stanford.edu/papers/munzner_thegisfigs.htm| reprint with permission of
Tamara Munzner)

18



Network representation: The network representatiormethod is often applied when a
simple tree structure is insufficient for represggmicomplex relationships. Complexity may stem
from citations among many academic papers (Mackiefaal. 1995; Chen & Paul, 2001) or
from interconnected web pages on the Internet (&mdr 1995). Among various network
visualizations that have been created, the sprmbeeder algorithm, originally proposed by
Eades (1984), and its variants (Kamada & Kawai,9)9Bave become the most popular graph
drawing algorithms. Figure 3-8 presents the vigadilon of co-authorship relationships among
555 scientists using a spring embedder algorithm.

Figure 3-8. Example of network representation: ®igation of a large co-authorship
network Qttp://www.mpi-fg-koeln.mpg.de:80/~lk/netvis/Hugeantit reprint with
permission of Lothar Krempel)

Temporal representation: Thetemporalapproach visualizes information based on temporal
order. Location and animation are two commonly ugisdal variables to reveal the temporal
aspect of information. Visual objects are usua#itfed along one axis according to the time when
they occurred, while the other axis may be usedigplay the attributes of each temporal object
(Eick et al., 1992; Robertson, et al., 1993). Fstance, the Perspective Wall (Robertson, et al.,
1993) lists objects along the x-axis based on seguence and presents attributes along the y-
axis. Animation is another effective way to disptagnporal information.

The seven types of representation method turn atisiextual documents into objects that
can be displayed. A visualization system usuallpliap several methods at the same time. For
instance, the multi-level ET-Map system createdCinen et al. (Chen, et al., 1998) combines
both 2D and the tree structure, where a large fseteb pages are partitioned into hierarchical
categories based on their content. While the ehtegarchy is organized in a tree structure, each
node in the tree is a two-dimensional SOM, on whibk sub-categories are graphically
displayed.

Many powerful visualization methods also requirevatted analysis techniques. For
example, the TileBar system (Hearst, 1995) emplloggext-tiling analysis algorithm to segment
a document, while ThemeView and Galaxy (Wise et H395) use multidimensional scaling
(MDS) to cluster and lay out documents on the stree
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3.3.2 User-Interface Interaction:

The “small screen problem” (Robertson et al., 1983)common to representation
methods of any type. To achieve effectiveness,featteve information representation method
needs to be integrated with user-interface intemacRecent advances in hardware and software
allow quick user-interface interaction, and vari@aesnbinations of representation methods and
user interface interactions have been employed.

Interaction between an interface and its usersomdy allows direct manipulation of
visual objects displayed, but also allows usersetiect what is to be displayed and what is not
(Card et al., 1999). The two commonly used intévacapproaches areverview + detailand
focus + contex{Card et al., 1999).

Overview + Detail: Overview + detail provides multiple views, withetlirst being an
overview, providing overall patterns to users. Dgtabout only the part of user’s interest can
then be displayed. These two views can be displayatie same time or separately. When a
detailed view is needed, two types of zooming aneally involved (Card et al., 1999): spatial
zooming and semantic zooming. Spatial zooming seferthe process of enlarging selected
visual objects spatially to obtain a closer looljeneas semantic zooming provides additional
content about a selected visual object by chanitggrgppearance.

Focus + Context: The focus + context technique provides detail (§)cand overview
(context) dynamically on the same view. One exangpthe 3D perception approach adopted by
systems like Information Landscape (Andrews, 19%]) Cone Tree (Robertson et al., 1991),
where visual objects at the front appear largen tih@se at the back. Another commonly used
focus + context technique is the fisheye view (srr1986), a distortion technique that acts like
a wide-angle lens to amplify part of the focus. Tdtgective is to simultaneously provide
neighboring information in reduced detail and syppieater detail on the region of interest. In
any focus + context approach, users can changesgien of focus dynamically. A well-known
visualization system that applies the fisheye tepianis the Hyperbolic Tree (Lamping et al.,
1995), in which users can scrutinize the focus amé scan the surrounding nodes for a big
picture. Other focus + context techniques includkering, highlighting, and selective
aggregation (Card et al., 1999).

The overview + detail and focus + context userriat® interaction approaches could
support knowledge navigation in various knowledggping applications.
The presented analysis framework is applied in Huek to nanotechnology knowledge

mapping.

3.4 Questions for Discussion

1 What are other new analysis and visualizatémmniques that are promising for large-scale
knowledge mapping research?

2 How can we adopt selected multimedia indexichniques (for images and audios) in
content analysis and knowledge mapping?

3 How can we adopt selected knowledge mappidgnigues to study the informal invisible
college of scholars using informal online resour@eg., via forums and web blogs)?

4  How can we develop an interactive, user-atletl, highly-visualized system for knowledge
mapping using different online resources?
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